Solutions for Recurrence Relations using Master Theorem

CSE2003 Data Structures and Algorithms

Instructor : Dr. C. Oswald

Students : S. Girish and Harshanth K Prakash

Vellore Institute of Technology Chennai (An Institution of Eminence recognized by MHRD) <u>chennai.vit.ac.in</u>

Massers theorem

$$\Rightarrow \text{ This wethod is mainly applied to the seccivence velation's of the form;} T(n) = aT(n/b) + f(n)
where a > 1 & b>1 are constants and f(n) is an asymptotically positive function.
This theorem has 3 eases;
i) 1 f f(n) = 0 (n10101-1), for some costant $2>0, +then T(n) = 0 (n10101-1),$
ii) 1 f f(n) = $0(n^{1}0^{1}0^{1}-1)$, for some costant $2>0, +then T(n) = 0(n^{1}0^{1}0^{1}-1),$
iii) 1 f f(n) = $0(n^{1}0^{1}0^{1}-1)$, with $E>0$ and $f(n)$ satisfies the regularity condition, then $T(n) = 0(n^{1}0^{1}0^{1}-1),$
iii) 1 f f(n) = $0(n^{1}0^{1}0^{1}-1)$, with $E>0$ and $f(n)$ satisfies the regularity condition, then $T(n) = 0(f(n))$;
Regularity condition; a $f(n/b) \le cf(n)$ for some torstant $e < 1$ & all sufficiently.
I arge n.
Supplified for cases;
 $T(n) = aT(n/b) + O(n^{1}(n^{1}n))$
 $a>1, b>1, k>0 & p is a real number.$
i) if $a > b^{k}$, then $T(n) = O(n^{1}0^{1}0^{1})$
ii) if $p > 1$, then $T(n) = O(n^{1}0^{1}0^{1})$
i) if $p > 1$, then $T(n) = O(n^{1}0^{1}0^{1})$
i) if $p > 1$, $(n > 1, (n > 1, (n$$$

iii) if
$$a \ge b^{k}$$

a) if $p \ge 0$, then $\tau(n) \ge \Theta(n^{k} \log^{k} n)$
b) if $p \ge 0$, then $\tau(n) \ge O(n^{k})$
And regularity condutton satisfaction.
Problems
0. $\tau(n) = 4\tau(n_{2}) + n^{k-1}$
here this recoverne relation is of, the
form $\tau(n) = a\tau(n_{2}) + f(n)$
so master's theorem can be applied
i. checking the solitable cases for
final result.
here $a = 4$, $b = 2$, $a \ge 1$ 8 by
 $and f(n) = n^{k}$
 $f(n) = \Theta(n^{\log k}, \log^{k} n)$, where $k \ge 0$
 $\therefore a = 4, b \ge 3, k \ge 0$
 $f(n) = n^{k}$
 50 this gatisfies Case 2
 50 this gatisfies Case 2
 $\tau(n) = \Theta(n^{\log k}, \log^{k} n)$
from case 2
 $\tau(n) = \Theta(n^{\log k}, \log^{k} n)$

O.
$$\tau(n) = 2 + \tau(n_{b}) + n^{2} \log n$$

It's at the form, $\tau(n) = a \tau(n_{b}) + t(n)$
So musters theorem can be applied
here $a = A$, $b = 2$, $t(n) - n^{2} \log n$
Checking for the cases.
Case 2:
 $f(n) = O(n^{2} \beta^{2}, \log^{2} n)$, $k > 0$
So 'substituting $a, b = 1$
 $f(n) = O(n^{2} \beta^{2}, \log^{2} n)$, $k > 0$
So 'substituting $a, b = 1$
 $f(n) = O(n^{2} \beta^{2}, \log^{2} n)$, $k > 0$
So 'substituting $a, b = 1$
 $f(n) = O(n^{2} \beta^{2}, \log^{2} n)$, $k > 0$
 $f(n) = O(n^{2} \beta^{2}, \log^{2} n)$, $f(n) = O(n^{2} \beta^{2}, \log^{2} n)$.
 $T(n) = O(n^{2} \beta^{2}, \log^{2} n)$
 $T(n) = a f(n_{b}) + f(n)$
 $f(n) = a f$

Case 1,
$$f(n) = O(n^{1} \Theta^{n-\epsilon})$$
, $\varepsilon > 0$, $then$
 $T(n) = O(n^{1} \Theta^{n-\epsilon})$, $a = \epsilon_{1}$, $b \ge 1$
 $\therefore O(n^{1} \Theta^{n-\epsilon})$, $a = \epsilon_{1}$, $b \ge 1$
 $\therefore O(n^{1} \Theta^{n-\epsilon})$, $a = \epsilon_{1}$, $b \ge 1$
 $\therefore O(n^{1} \Theta^{n-\epsilon})$, $e = 1^{n-\epsilon}$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $e = 1^{n-\epsilon}$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $e = 1^{n-\epsilon}$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $(a = S)$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $(b = 2)$
 $T(n) = O(n^{3})$, $(a = S)$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $(b = 2)$
 $T(n) = O(n^{3})$, $(a = S)$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $(b = 2)$
 $T(n) = O(n^{3})$, $(a = S)$
 $\Rightarrow O(n^{1} \Theta^{n-\epsilon})$, $(b = 2)$
 $T(n) = O(n^{3})$, $(a = S)$
 $(a = 16)$, $(a = 16)$, $(a = 16)$, $(a = 16)$, $(a = 16)$
 $f(n) = 16 + (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = 16 + (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = 16 + (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = 16 + (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1} + n)$, $(a = 16)$
 $f(n) = (n^{1} \Theta^{1}$

$$T(n) = O(n^{1/2} + 1)^{n} \left[a + a = 16, b = 4 \\ T(n) = O(n^{1/2} + 1)^{n} \right]$$

O $T(n) = 4T(n_{1}) + 10gn$
Sol: - This relation is also, of the form
 $aT(n_{1}) + f(n_{1})$, so masters theorem
is applicable.
here $a = 4, b = 2, f(n) = 10gn$
where $a = 4, b = 2, f(n) = 10gn$
where $a = 4, b = 2, f(n) = 10gn$
where $a = 4, b = 2, f(n) = 10gn$
 $a = 4, b = 2, f(n) = 10gn$
 $a = 4, b = 2, f(n) = 0$ ($n^{1/2}b^{n}$)
 $a = 4, b = 2, f(n) = 0$
 $a = 4, b = 2, f(n) = 0$
 $a = 4, b = 2, f(n) = 0$
 $a = 4, b = 2, f(n) = 0$
 $a = 4, b = 2, f(n) = 0$
 $a = 4, b = 2, f(n) = 0$
 $a = 1, b = 2, f(n) = 10gn$
 $b = 1 + is of the form $a = T(n_{1}b) + f(n)$
So applying masters theorem
here $a = 2, b = 2, f(n) = n \log n$
So checking the cases suitable,
 $a = a = 2, f(n) = 0 (n^{1/2}b^{n}) = 0$
 $k = 3 = 0 + 0 + 0 + 0 + 0$$

$$f(n) = 0 (n^{10}g^{1/2}, \log n) (a=b=2, k=1]$$

$$f(n) = 0 (n^{10}g^{1/2}, \log n)$$

$$\therefore \text{ It satisfies case 2 then}$$

$$T(n) = 0 (n^{10}g^{1/2}, \log n)$$

$$T(n) = 3T(n/2) + n$$

$$\text{It is also n the form of a t(n/b) + f(n)$$

$$\text{here } a=3, b=3, \dots, f(n) \cdot n$$

$$\text{We can apply simplified eases of trasters theorem$$

$$\therefore a=3, b=2, K=1, p=0 (real normely)$$

$$\therefore \text{ it satisfies 'case 1 of masters}$$

$$\text{theorem}$$

$$(n, n) = 0 (n^{10}g^{1/2}) = 0 (n^{10}g^{1/2})$$

here
$$a=3$$
, $b=4$, $f(n)=nlogn$

So checking the cases,
In case3,
$$f(n) = \mathcal{L}(n^{\log_{a}+e})$$
 with $e > 0$,
And also by using simplified cases
 $a=3, b=4, k=1$
here $a < b^{k}$
.'. It comes under case3

To satisfy, checking for regularity condition a.f(n/b) & c.f(n) where cc1 & c is some constant.

For regularity, $af(n/b) = 3 \times (n/4) \log(n/4)$... let k = n/4 and observe that af(k)is equal to $a k \log k$ $\Rightarrow 3(n/4) \log(n/4) \leq (3/4) n \log n = c f(n)$... c = 3/4... t = 5ak Shes the case 3 then $T(n) = O(n \log n)$

O.
$$T(n) = 3T(n/3) + n/2$$

Sol:- It is of the form $aT(n/b) + f(n)$, so
Master's theorem can be applied;

here
$$a = 3$$
, $b = 3$, $f(a) = \pi/2$
checking the cases,.
In case 2, $f(b) = O(c^{1/3}b^{2}, \log^{4} n)$,
where k is some constant, $k>0$
where k is some constant, $k>0$
when verity using simplified asses
 $a = 3$; $b = 3$, $k = 1$
 $a = b^{k} \rightarrow 1t$ satisfies case 2
when verity $1 = O(c^{1/3}b^{4}, \log^{4} n)$
 $f(a) = O(c^{1/3$

In this the master theorem is
violated and cannot be applied.
(1.
$$T(n) = 2T(n/2) + n^2$$

Soli- It is of the form $aT(n/b) + f(n)$,
So we can use masters theorem
here $a = 2$, $b = 2$, $f(n) = n^2$.
 $log_{b}^{a} = log_{2}^{2} = 1$
So enecung the cases
 $ln(case 3, f(n) = -2(n^{log_{a}^{a}+e})$ with
 $e>0$ and $f(n)$ satisfies regularity
"condition" then $T(n) = O(e(n))$
when $e = 1$.
 $f(n) = D(n^{log_{a}^{a}+1}) = D(n^{2})$
 \therefore It comes under case 3, So is
regularity condition. $af(n/b) \in c.f(n)$
 $\therefore the satisfies the case 3 then,
 $T(n) = O(n^{2})$$

Q.
$$\tau(n) = 2\tau(n/2) + b(n)$$

Soli- It is of the form $a\tau(n/b) + f(n)$
here $a = 2, b = 2, f(n) = 0(n) = 0$
Bo applying the cases,
In case 2, $O(n) = iet f(n) = 0(n) = 0(n) = 0$
where k is constant, $k > 0$
 $f(n) = 0(n) = 0(n) = 0(n) = 0(n) = 0(n) = 0(n) = 0(n)$
 $f(n) = 0(n) =$

. It satisfies case 1 of masters theorem
=>
$$\tau(o) = O(cn^{10}gs)$$

have $a = 4r$, $b = 3$
 $\therefore \tau(n) = O(cn^{10}gs^4)$
 $\tau(n) = O(cn^{10}gs^4)$
 $\tau(n) = O(cn^{10}gs^4)$
 $\sigma(n) = 3\pi(n/3) + \sqrt{n}$
soli- It is also to the form $a\pi(n/b) + f(n)$
here $a = b = 3$.
So checking the cases;
 $f(n) = n^{1/2}$
 $(n case 2, f(n) = +O(cn^{10}gs^4, log^{n}))$
 $(t doesoit satisfy$
 $\cdots (cn^{10}gs^{n}, log^{n}))$
 $(t doesoit satisfy$
 $\cdots (cn^{10}gs^{n}, log^{n})$
 $(t f(n) = O(cn^{10}gs^{n} + K))$
 $= O((n^{10}K) = O(cn^{10})$
 $= heorem$.
 $\tau(n) = O(cn^{10}gs^{n})$
 $\tau(n) = O(cn^{10}gs^{n})$
 $\tau(n) = O(cn^{10}gs^{n})$

References :

- 1. E.Horowitz, S.Sahni, S.Rajasekaran, Fundamentals of Computer Algorithms, Galgotia Publications.
- 2. T.H. Cormen, C.E. Leiserson, R.L.Rivest, C.Stein, Introduction to Algorithms, PHI.
- 3. Sara Baase, A.V.Gelder, Computer Algorithms, Pearson.
- 4. Mark Allen Weiss, Data Structures and Algorithms in C, Pearson Publications.
- 5. Alfred V. Aho, Jon E. Hopcroft, Jeffrey D. Ullman, Design & Analysis of Computer Algorithms, PEarson Publications.
- 6. www.cse.iiitdm.ac.in/lectnotes.html